
-..

-J
cc)
o
-d

.*
I..

I

NATIONAL ADVISORY COMMITI’EE

FOR AERONAUTICS

TECHNICAL MEMORANDUM 1248

INVESTIGATIONS OF LATERAL STABILITY OF A GLIDE BOMB

USING AUTOMATIC CONTROL HAVING NO TIME IJIG

By E. W. Spender

Translation of ZVJB Forschungsbericht Nr. 1819, May 1943

,..

.



TECH LIBRARYKAFB, NM

llllllllllulul~llllll!lllllll
m144704

.

●
●

NATIONAL lwIIsaRY camITrEE FCR AERONA~ICS
.

TECHNICAL MEMORANDUM 1248

INKtlSTIG~I~ QI’-AL STABIIXPY ~ A GLIDE BOMB

USII?GAUTOMATIC CONTROL HANZNG NO TIME LAG*

Outline: I.
II.
111.
Iv.

VI.

VII.
VIII.

lx.

By E. W. Spender

sYK1301s
REASONS FQR AND AIM OF THE 12?VXSTIGATION
DESCRIPTION OF THE AUTOMATICALLY-CONTROLLED GLIDE BOMB
SETTING UP OF ‘I!M!lI?REQUENCYEQUAT’1~ (CHARACTER~TIC

a.
b.
c.

d.
e.
f.
~“

EQUATION)
Preliminary Remarks
The Control Law
The Horizontal Forces

Path
The Moments shout the
The Moments about the

Perpendicular to the Flight

Longitudinal Axis
Vertical Axis

The Soluticm of the Three Equations of Motion
Brief Discussion of the Coeffioimts of the

Frequency Equation (Characteristic Equation)
TBE EVALUATION OF THE FREQUENCY XQUATION (CHARAC’I!ERIBTIC

EQUATION)
a. The Method Followed
b. The Stability Domain
c. l?requenciesand Dampings
NUMERICAL JEKAMPLES
a. Numerical Data
b. The Principal Case
c. Influences of the Glide+60fi Values
d. Conclusion
smMKRY
APPENDIX. AN APPROXIMATION METHOD FOR TEE SOLIJTIONOF

ALGEBRAIC QUARTIC EQUATIONS
REFERENCB

“untersuchung der Seitenstabilit-iiteiner Gleitbonibetit einerv
automatisthen Steuerung ohne Voreilun~.” Zmtrale flirwissenschaftliches
Berichtswesen der

. Berlin-Adlershof,
Luft%hrtf orschung ~es Generalluftzeugmeisters (ZWB)
Forschumgsbericht Nr. 1819, May 1943.



2, NACA TM 124$

*

1. SYMBOLS

symbols of flight“mechanicsaccording toIn addition to the
DIN L 100 the following were used:

.

coefficients of the frequency equatfons

Hurwftz determinants

damping of oscillations in roll and yaw

frequency of the oscillatims in roll and
yaw

l?roudenuniber

altitude

control~earing ratio

measuring ratio (cf. p. 7)

moment coefficients of the lateral
stability (cf. pp. 12 and 13)

aerodynamic time unit

equilibrium flight velocity

variables of the frequency equation

rotational angle about the vertical axis
(yaw angle) ‘

relative density of the mass of the airplane
w

products of the pairs of roots of the .
frequacy equation “

a,b,c,d,e

1/s to 1/s4
J

i./s to 1/s15D1 to D
5

D+z

fx,fz

.

Cps

72
Fr=—

bg

H km

k

m

n ...

2(3TF=—
gpm

s

m/sTo

z

L

K

,-

1/s2

l/s sums of the pairs of roots of the frequency
equation
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T .% non+iimensional time

II. REASONS FOR AND AIM @ ‘THE-TIGATIOR

For a longitudinally and laterally stable glide boti design
developed in the DFS “Ernst Udet” [1]1 two possibilities existed for
obtaining a rectilinear flight path: either tithout automatic control,
with maintenance of high manufacturing accuracy, in particular very
good constructional symnetry, or else with the aid of an automatic
control; in the latter case too great constructional accuracy coild be
foregone. Since, however, even slight constructional defects (probably
unavoidable even in most careful manufacture) may lead to considerable
disturbances [2], only the second possibility could be applied in
practice. The longitudinal stability couldbe amured very simply,
(even without use of automatic control), and lateral stability, attain-
able only with much more difficulty, became the main object; it was to
be attained with the aid of a special control arrangement in the glide
boti. In order to limit to a mhimum the drop tests which =e e~ansive
snd.require mch time, the lateral+ tability properties of the boniband
the most favorable design of the automatic pilot and the most favorable
adjustment of the control possible within practical limits were to be
ckrified by calculation beforehand. This is, essentially, the aim of
the presant report.

III. DESCRE’TION OF THE AWWICNXY–

CONTROKED GLIDE BOMB

Figure 1 is an outline drawing of the investigated glide bonib.
The fuselage consists of a boti SC+OO, the cylindrical part of which
was slightly elongated; the short blunt tail section was replaced by a
longer one of aerodynamically more favorable design, which was provided

“ with a vertical fin and housed the control. The two wing halves,
provided with ailerons, me attached laterally at the center of the
fuselage. The wing shows pronounced swee~=k but not tihedral and is
at zero incidence with reslect to the fuselage. Since the wing section
is symmetrical, both wing halves are of equal area. For attainmmt of
a sufficient longitudinal stability and adherence to a certain ca-value
an appropriate position of the center of gravity is selected and, since

lNtiers in brackets refer to the references at the end of the
report.
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tail surfaces are lacking, both control surfaces are accordingly trimmed
upwards. This then is the zero position about which they are differen–
tfally actuated to serve as ailerons. They may also be simultaneously
deflected through a dlfferemtial Mnkage as elevators. Chiefly for
variation of the yawing moment due to sideslip (weathercock stability)
a stabilizing fin was sometimes attached to the boti nose; it slightly
Influenced, among other factors, the lateral force, the rolling moment
due to sideslip, end the damping in yaw.

The ccmtrol required for atta-g rectilinear flight and suffi-
cient lateral stability was ELgyz?o cmtrol developed in the DIH “Ernst
Udet” which operates without time lag, that is, effects any control-
surface deflection pertaining to an angular displacement without delay.
No device of any kind producing a leading of the control++urface
deflection relative to the angular dlsplace~t was applied. Of course,

.
any other control coul.dbe used provided it operated according to the
same control law so that the results of this investigation apply to it,
too●

The control gyroscope is installed so that its measuring axis lies
in the symetry plane of the glide bcmiband forms a tilt angle with the
vertical axis; the purpose is sensitive measurement of banking and
yawing deviations and their transformations into an aileron deflection
through a gear with adjustable ratio. The proporticmality between bank
and yaw end aileron deflection is influenced by the gyroscope tilt
sngle. The following control method results:

3Y, due to any dlsturbancej CII13-Y a bank of the glide boti occurs,
a proportional aileron deflection counteracts it and after a few damped
oscillations the “undisturbed-fligh+ ath” position Is r~stablished.

$An error occurring in the flight path also is measured by the control;
the originating aileron deflection produces a bank toward the side
opposite to the cotise deviation. Thereby the flight path and with it
(due to its weathercock stability) the @ide bm are, as intended,
turned back in the directicm of the undisturbed flight path (azinnith
stability). With the approach toward the undisturbed flight path the
bank is again neutralized so that an aperiodical transitional motion in
the tilrectdonof the undisturbed flight path results which could, with
reference to Mathiae [3], be designated as “yawing” motion; damped
rolling and yawing oscillations are superimposed on it.

2U ca8e of calm air, this will apply throughout.
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.
IV. SEI’T12JGUP Ol?THE l?%EQIIEIKXEQUATION

. (CmmETIC EQUATION)

a. Preliminary Remarks

For safety reasons a release velocity far below the equilibrium
velocity To of the glide bofi was selected for releasing the glide
bonibfrom the carrier plane so that in no case would an immediate
ascent of the flight path occur. However, this leads to a path oscil-
lation (phugoid) of the glide bonib;without suitable control measures
it is Improperly damped and has a relatively long period of oscillation
so that during the considered time interval from the release of the I
glide bonibonwarda steady flight path does not exist. Thus, investi–
gations regarding the lateral stability of a glide bofi are of increased
yractical importance when they take the simultaneous path oscillation
into account; this will be attempted below.

The numerical integration of the known six differential equations
of the longitudinal end lateral motion, wi~ consideration of the
control law and with inclusion of terms of l@+er order, was not
intended. Such a numerical integration would have required an intol-
erable calculating expenditure and still would have given results in
limitedly accurate agreement with actual conditions, due to estimated
aerodynamic coefficients of the glide boti and to other simplifications.
Accordingly a few approximations (suggested by the nature of the
problem) were made which led to far-reaching simplifications of the,
calculation end to a no longer Intolerable expenditure of work for the
numerical evaluation.

Of special Importance is the assumption that Ca, in this investi-
gation practically dependent on cc only, remains constant during the
flight of the glide boti. This assumption is justified since the
relatively properly damped a-oscillation is considerably more rapid
than the path oscillation, thus is damped quickly, and u th= retains,
without change, approximately its equilibrium value corresponding to
the static longitudinal stability. Besides, th3s behavior - estimated
by rough calculation – was well confirmed by film recordings of the
releases. Hence all coefficients which are functions of a (or ca)
remain constent and lead to an extensive simplification of the
calculation.

Furthermore it is presupposed~ as is customary, that the course
of the longitudinal motion is practically independent of the lateral
motion. This is justified here for the added reason that the coeffi-
cients determining the longitudinal motion are, in the first approxi-
mation, independent of the unspnetricalstate of flight of the lateral
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moticm. This assumption is
within the limits of normal

The opposite, that the
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justifiable only as long as one stays
disturbances, the only ones considered here.

longitudinal. motion - no significant
effect on the lateral motion, no longer holds true here. This applies
only when a generally steady and little disturbed flight path is being
considered. Since, however, the deviations of the longitudinal motion
from a steady flight path occurring in the present case far exceed the
magnitude of small disturbances, they do influence the lateral motion
quite noticeably and must be taken into account. In the complete
equations of the lateral motion [4] there appear in connection with the
longitudinal motioh, aside from the constant a, the values of v, y,
end the first derivative with respect to time, ~. It is true, these
three values very, but only with a frequency up to two orders of magni-
tude lower than that of the rolling and yawing oscillation.

If one, therefore, considers a small pert of the course of the
motion, sufficient for $uiging the’stability of the lateral motion,
after a disturbance, v, y, and ~ vary so little in the meantime that
they may be regerded as practically constant.

This assumption enables solution of the three differential equa-
tions of the lateral motion in the conventional manner without consid-
erable difficulties. If one wants to find out whether lateral stability
prevafls during the entire course of the longitudinal motion, one sub-
divides the course of motim appropriately and then introduces the
corresponding values of v> y, and j as sectionally invariable into
the lateral motion. In the presant investigation the lateral stability
determined at the four points denoted in figure 2 was regarded as
sufficient for the stabildty of the lateral motion for the full duration
of a path oscillation ~d thus during the ~tire free flight of the.
glide borrib.

~ order to include with certainty even the largest path oscil-
lations to be expected at the glide+onib releases, the release velocity
was assumed to be only 60 percent of the equilibrium velocity V. of
the glide boti.

The lateral stability for controlled longitudinal motion also may
be investigated in the msnner described above~ although only under the
limiting presuppositions that a remains ~actically constant or at
least sectionally almost constant and that the oscillation period of
the path oscillation considerably exceeds that of the rolling and
yawing oscillation.

Furthermore the itiluence of the Mach number is neglected. Although *

a velocity of more than 200 meters per second> which corresponds to a Mach
number of over 0.6Y was attained in drop tests and though the present
investigation is intended to include these velocities} a consideration

.

.

u
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of.the influence of the Mach nuniber
Only very inadequately) would be so

7

on the coeffloients (which is ImLown
ugcertain that we desisted from it.

Besides,-as tests by &hert [~] ad [6] show, really critical cadi-
tions start appearing only at Mach numbers around O.7; here, then, lies
the limit of validity for the presmt investigation.

Finally it should be mentioned that a change of the air density in
the course of the lateral moticm is not taken into cansiderati~:
first, the altitude of a single initial disturbance causing the 08cil-
lation (which Is decisive for the determination of the lateral stability)
does not vsry so greatly aa to render that profitable; second, the
(after all, si~if Icant) difference in altitude betwem peak and bottom
of the path oscillaticm (where the lateral stability is calculated) is
included h the investigation of the influence of relative aircraft mass
densities us of cliffermt magnitude.

Before we start setting up the equations for the lateral motion we
shall discuss the control law of the built-in cmtrol since it is being
introduced tito tiese equations.

As described on
as well aa about the

b. The COU+2?01lhW

page 4 , sngles of rotaticm about the longitudinal
vertical axis are measured by means of the control

used here, and a rollhg moment proportional to &em was produced
through an aileron deflection without delay. However, since an aileron
deflection generally also causes a yawing moment, tld.slatter must be
taken into account ds we~. The,addttianal.lypossible slight variatims
of lift, drag, and lateral force we neglected since the ailercm deflec-
tion causing them remins small due to a disturbance assumedly small
throughout. H the sngle of rotation about the vertical axis to be
desi~ated as yaw angle is (for want of mre suitable letters) denoted
by K and is counted starting from the desired position, the control
law reads:

Therein k signifies the control~e=ing ratio if one understands
it as the ratio of the aileron deflection to the yaw angle with simul-
taneous ins- itivtty to bank,* and m, the measuring ratio tidicating
what fractia of a bank is measured by the control like a yaw angle and
transformd into an sAleron deflpction.

*Translator’s note: Literally, “error-free bank.‘t
s
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In the arrangement selected here m depends on the degree of tilt
of the control gyroscope in the glide boti and remains throughout
smaller than one, that is, the bank is always measured with less sensi-
tivity than the yaw angle.

Since later on, the rolling and yawing moments stemming from the
control also are needed, the expressions for those are set up as well.
Both moments axe dependent only on K and q so that one may express
them as follows:

aileron rolling moment = LKSK + ~’~

aileron yawing moment = NK;K + Ngtq)

The moment essential for the lateral stability of the controlled
glide bomb, newly added in coqerlson to the uncontrolled condition,
is $. It signifies a imdiately effective restoring moment for the
longitudinal axis which intervenes directly in case of banking errors.
This restoring ability about the lmgltudinal axis corresponds to the
yawing moment due to sideslip which is important for the vertical axis
end is regarded later in the same way as likewise characteristic vari-
able. Taking the cmtrol law Into account, one finds ~’ = lmiL5:

which shows that not merely the control%earing ratio, measuring ratio,
or aileron effectiveness are of importance, but their combined action.

The nmment LK8 coming into effect in case of lateral deviations
serves, as described on page 4 , only for maintaining the course and
thus is less iwortant than ~ for the lateral stability of the glide
boIlib.

The aileron yawing moment originating in case of an aileron actu-
ation is produced only unintentionally. It does have a slight influence
on the lateral stability as will be seen later; thus it must, as a
precaution, be taken into consideration, but i.sotherwise of no
importance?

After these preliminary remarks the dynamic relations of the lateral
motion are set up. The longitudinal and vertical axes of the glide bomb
were selected as the two axes about which equilibrium of moments must
prevail; for the equilibrium of forces a horizontal direction of refer-
ence perpendicular to the flight path was chosen. The following sec-
tion (c) offers the reasons for this latter choice which is at variance
with convention.
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c. The Hcn5zontal Forces Perp=dicular

. to the Flight Path

Bssical~, any direction of reference would be equally suitable
for the equilibrium of forces if it cmly cmtains c~onents of the
forces responsible for the lateral path curvature. Preference is to be
given to the cme which appears especially illustrative from the _
Ical viewpoint.

Accor&lng to what was said on page 6, the longituhal inclination
of the flight path y varies so little during the brief time interval
sufficient for ccmsideratim of the lateral motim that it may be
regsxded as fimriable. Thus the path section considered is part of a
helix which one ~ visualize as wound on a vertical circular cylinder
of the radius of the flight path, as shoun in figure 3.

On this helical line travels the glide bomb which for the consid-
eration with respect to forces of the lateral path equilibrium must be
visualized as a mass point; the position of the body axis of the glfde
bmib is, for the time being, unimportant. The direction of the centrip-
etal force which causes the latersl curvature of the flight path and
coincides with the principal normal of the helix is horizontal and

. perpendicular to the. flight path. Thus it is logical to balance the
coqmnents of the air forces in this selected direction with the mass
force which is effective as centrifugal force. ml forces acting in

. the direction of flight path and gravl~ have no influence on the
lateral curvature of the flight path visuaJ3zed as part of a heltx,
becawe they are perpendicular to its principal normal.

In the specifications D1l’?L 100 this axis used as the line of
attack for the lateral+’orce equilibrium is not especially characte~
i zeal;however, it coincides with yg in case

Actually (yg)>o is there perp=diculsr to

and the cosines of the angles formed with &
may be taken directly tiom the attached form.
iS mostly @’V= by its compmmts A, W, and

one puts X = O.

‘g
as well as tO Xa

effective air forces
Stice the total air force
Q and since W, l@ng in

the flight path Xa, does not
ratio becomes:

A COS(-za,yg)x~ +

. .

Additionally, it fs here

yield a contribution, the equilibrium

Q COS(Yasyg)x=O = : V(cos y)?

tacitly
effective air forces - those stemming

.

assumed that the laterally
from the rotations of the glide
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bomb about its longitudinal
ailerm deflection - ere so
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and vertical axis as well as from the
.

small that they maybe neglected [3] and.[7].
.

With A = Ca g+ F and Q= Cq’ ~ #F~ end special consideration

of the fact that G here must not be replaced by ~~$F EISiS
00s 7 2

custommy in case of steady rectilinear flight, cme then obtains

ca&Fsin~+cq&F~ COS~ =:VCOS7??

Since one has to deal for the lateral motfm (however,
longitudinal moticd) cmly with small disturbances, one may
equate sin p

Here the
consideration

= v end COS ~ = 1 and there results

d. The Moments about the Lcmgitudinel Axis

not for the

(1)

complete Euler equation must be stated in order to make
of the influence of the ~oscopic terms possible:

L= J~ + (Jz -Jy)u@z

L conttins aU rolling mments stemming from the air forces;
they ne causedby sideslip, rolling and yawing, andby the aileron
deflection.

Since for gldde bonibswith relatively very small span the moments
of inertia Jy and Jz are ahost equal, the slight difference between

them, multiplied by the small rotational velocity ~ stemming from
the longitudinal motion ~d the yawing velocitY, is so ~simific~t,
especially in comparison with the strong aileron mmmmt, that the r@ht-
hand ~oscopic term is neglected. Thus there remains after introduc-
tion of all partial nmmants
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,

e. The Moments about the Vertical Axis

. Eulerts equation here reads

I?. Jz&z +(JY– Jx)%

Due to the very small span of the glide bonib J= is by about one
order of magnitude snmller - JYS and the expressi~ Jy - Jx) maY

(
he replacedby Jz. N is subdivided as in (d.)and one obtains

Here the gyroscopic term must not be neglected; even though it is
not important, it is, compared to the yawing moments due to the air
forces, sufficiently significant to be taken into consideration, in
order to avoid errors.

There is still another reason for the seemingly different evalu–
ation of the gyroscopic terms in the moment equations for longitudinal
and vertical axis: The sum ofi-’themoments about the longitudinal axis

● is dominatedby the aileron moment which acts on a large lever arm of
about half the span and always may be made the predominant rolling
moment by suitable design of the control and ailerons. Conditions me.
differemt for the yawing moments; there the air force yielding the
restoring moment is not so widely variable as for the aileron, due to
the spatial limitation of the vertical fin; furthermore, it acts on a
lever smn which measures only centimeters and.is, moreover, relatively
uncertain due to manufacturing inaccuracies occurring in practice,
caused either by the position of the center of gravity or other faults
in construction. For this reason the moments effective about the
vertical axis (which is more sensitive) must be taken into consider-
ation to a much higher degree than is required for the longitudinal
exis, if surprises tie to be avoided.

f. The Solution of the Three Equations of Motion

The equations of motion, here compiled once more

LPtp +Lxt~ +LZ*OZ + I#CP + LKtK = Jx&

(1)

(2)
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(3)

are three simultaneous clifferantial equations; however, their -0-wns
me not yet uniform. ~ itself, it would be a matter of indifference
which one is selected for the solution; however, since the first
equation is particularly characteristic for the lateral motion, the
three unknowns V> ~> ~d X appearing in that equation are to be
~intained throughout.

Thus all variables appesring in the second and third equatdon must
be expressed in terms of ~, ~, and X and their derivatives with
respect to time. This is done partly accortig to Rautmberg [8] ~d[9],
with the presupposition that the disturbances of the lateral motion are
small (thus the three unknowns Just mentioned are anly a little
different from zero) and with the presuppositim that for the longi-
tudinal motion a and ~ –but no longer 7 -may be regarded as small
quantities. Since steep nose dives may be left out of consideration
anyhow, the following
result:

T =~+

K =p+

Furthermore, the
respective moments of

approximations, valid up to about y = 4~0,

~=fi -isin7
$tany

x Cos 7
~=;

‘z =b+icos7

~ment ticreases L’ and Nt, dlvidedby the
inertia J= and Jz, ere expressedby the

foliowing non4immicmal nmment coefficients of lateral stability:

dampfng

rolling

rolling

aileron

in roll

moment in yawing

[1
2 ikL

moment due to sideslip lP=: ~

[1

2 acL
rolling moment (total) lE=;

.=
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.
aileron rolling moment (due to q)

abbrevfatedly: aileron moment
.

aileron rolling moment (due to K)

rolliqyyawing

daqin~in-yaw

moment

yawing moment due to sideslip

(weathercock stability)
.

aileron yawing moment (total.)

aileron yawing moment (due to q) ,

aileron yawing moment (due to K)

For the four mmuent coefficients which we decisive for the
restoring and daqping nmm.antsabout the longitudinal and vertical sxls
the sign was selected so that they appear – as geaerally customary in
the theory of oscillatims, – as positive quantities.

.

Taking the control law valld here ~ = k(~ + rmp) into cansidera–
tlon, some momsnt coefficients may be transformed, after brief inter-
mediary calculatim, as follows:

%
= -luIq

lK=-~~

By these transformations
aileron moment ~ which

%

n~

it was attained
is particularly

that the connection of
important for the lateral
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stability with the lmown values of the control (k,m) and the automatic
pilot (lE) becomes manifest and that the three remaining moment coeffi–
cients are expressed by this aileron ?mmant

[1
%anda further known

~,

.

numerical value

%
2GIf, furthermore, the aerodynamic time unit ~ =—

[
s

1
= Dimension

● gpvF

2Gand the relative aircraft mass density ~s = — are introduced, there
gpsF

results finally:

Lzt ~
—= — lZ
Jx TF

Therewith the
arranged according
following form:

Dimension Dimension

l/s
~x ?
—=-%Jz ~

1/s

.
l/s =.-+nz

Jz %
l~s

@ W.-kn
Jz T$ ~

1/s2

l/s2 % %%l=_—
J= Qq% 1/s2

1/s2
~K1

1 % v~
—=-;1k%2% l/s2
Jz

equations (l), (2), and (3), on pp. 11 and 12,
tO the three unknowns, ~, ~, and X, assume the

CaV+CqfB-Tm COS y~=() (la)
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. .

1 Ps
–~-#d’”s~x+ 1q(l-x )Siny+lzcosy;

F

(2a)

1.— [(%- TF~) Sh 7 + nz Cos + -(w $=0 (Sa)
‘F

The further treatamt of these three equations does not offer any
additional peculiarities; the unknownss Wj P> and X3 are put propor- .
tional to at and A is then determined from the condition that the
prtncipal dete~t of the previous equation system must vanish if
the solutions are not to be identically zero. One then obtains for x
a equation of the fifth degree, the characteristic equation:

.+

.
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.

with the coefficimts

a=#-(%+nz+cq’ ‘Catany )

.
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Compared to the frequenty equation of the uncontrolled lateral
motion which is of the fourth degree, its degree is now tncreased by

one. The reason lies in the fact that for the controlled glide bonb
treated here, due to the control a formerly non-existent ti~up with
a direction h space or, more accurately, with a directional plane, is
added.

A was not made non4imens tonal by means of the aerodpmic time
unit ~ because here that would not offer any advantage; it would not
make any difference for the later representation of stability domains,
but would be of disadvantage for the determination of the oscillation
frequencies since the result has to be converted again to seconds
afterwards.

No dlfficulty arises if, nevertheless, a ncm-dim~hnal representa-
tion of the frequency equation should be required for some reason. One
has to take into consideration that in solving for the three unknowns L,
~, and X one should have made them proportional, not to ekt, but

to ezT, with the non~mensional z appesring in the frequency
equation instead of A and T in contrast to t, denoting a non-
dimensional time ● Since, therefore, ZT mast be equal to At and, after ‘
selection of ~ (at first arbitrary) time unit T, the non+mensional
time becomes 7 = +

tall
, there results X = .“ If this value is inserted

into the frequency equation and the to eqyation is, nmreover, enlarged
by T5, it can be seen easily that due to the specific selection of the
aerodynamic TF for T the T

%
powers in ysmentheses for a2J.coeffi–

cients cancel each other; one o tains the non—dimensional form of the
frequency equation

3 2 + dT~4Z + dFZ5 + aTFz 5=fJ4 + b~2z3 + C% Z

It must be well considered here that - because of the nonsteady
longitudinal motian due to a ~oscopic term - the TF in the coeffi-

cients bT#, CTFS
frequency equation
csncel.led.

g. Brief

and %4 remains and thus in the non4imens ional
also the direct Influence of the velocity is not

Discussion of the Coefficients of the lh?equency

Equation (CharacteristicEquation)

& will be shown later (p.20 ), one condition required for attain-
. ment of lateral stabi~ty is that all coeffici-ts be POSitive. If a

few numerical values, enumerated m pp. 25 and 26, are anticipated, one
obtains for the separate coefficients under this point of view the

. following results:
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a is with certainty alw~s positive since the chiefly irqortant
clampings lx and nz about the longitudinal a!ndvertical axes are
positive as is also the lateral-force increase and, in descending
flight, -ca tan 7. Besides, this last expression equals ~ for
steady rectilinear flight, but not under any other conditions.

b also is positfve lecause the restoring moments ~ and n
!predominate for the longitudinal and vertical axis; due to the hig

relative aircraft mass density us here - and also for the other
coefficients - chiefly the terms containing that quantity are of
importance.

c depends on the expressions
v’ md ~PP

and thus must
always be made positive.

d depends to a high degree an
[
‘E

J
—l~+n~,
lg

thus on the sign
of e.

e will be transformed somewhat further; using the expression
for ~ onp.ls me obtains

[ 1
‘$lP+n$~=W$ - lp~

Similerly to the static lateral stability of uncontrolled flight
this expression, too, has special significance. If one visualizes that
the glide bonibsideslips to the side opposite to the bank during an
error in banking, it ts the rolling moment ~ stenming from the
aileron deflection and the weathercock stability n

1?
which attempts to

right the glide bomb again whereas the rolling mome t due to sfdeslip 1P
and the aileron yawing moment ~ tend to increase the bonibtsangular
deviation. Thus sufficiently large values of ~ and n~ must be
selected in order to have e with certainty turn out positive, particu-
larly if

?
is known only approximately or the sign varies (in case

of aileron elections of different magnitudes), as happens occasionally.

This brief discussion, which has shown that all coefficients of
the frequency equation always may be made positive, will have to suffice
for the time being; detailed trea-t of the connections with the
dyntic lateral stability will folJow ti later paragraphs.
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V. THE EVALUATION OF THE FREQUENCY EQUATION

(CW-~TIC EQUATION)

a. The Method Followed

The frequency equation and lmowledge of the values contained in
it offer a means for mskfng, in any case, a statement regerding the
stability of the glide boribafter a disturbance of the lateral nmtion,
and for calculating the occurring frequencies and clampings. This
approach by particular values is practically the only ane, if a
comprehensive view of more general validity is to be given, & this
investigation alms to do; a general solution is not possible and clear
fundamental insight into the complicated inter-relaticmship of the
veriables of this problem is hardly ever obtainable.

●

Thus it is the
only possible course to strive for a comprehensive survey of the
Influence of the frequency equation on the lateral stability by numerical
substitution of all.veriable quantities in automatic pilot end control
and by the evaluation of the frequency equation.

In limiting this investigation to an automatic pilot of the type
used In the glide bonibhere described, part of’the values in the coeffi-

. clents a to e (p. 16) have been made -practicallyconstant. These
values will probably not essentially deviate for automatic pilots of
slightly different form; the larger psrts of the values, however, may

. be varied or we lmown only rather uncertainly so that their influence
must be taken into consideration. If, moreover, all possible cotiina-
tions shouldbe formed, such en enormous nrmiberof cases to be calculated
would result that one will try to attain the goal by a less tiresome
method.

Starting froma principal.case, characterized on the whole by mean
values of the vsria%les concerned, the influence of these quantities on
the lateral.stability was investigated one at a time. One forms – if
the expressfmnbe permitted - the partial differential.quotients of the
influence on the lateral stability with respect to all possible vari-
ations of the controlled automatic pilot. In this way one obtains a
complete picture of in what respects alterations on the glide bomb must
be made in order to improve its lateral stability. Of course, there is
no guerantee thatfor a different selection of the prticipal case the
influences would have made themselves felt in the same way. It is even
feasible that an influence, favorable for a certeln case, might turn
into the opposite for another. However, where that is the case, one

. will always spot-check anyway, in order to avoid the minor inaccuracies
of this method. At any rate, the expenditure in calculation for this
method is the ndnimum imaginable for a clarificatim of this rather

. involved problem (with the ob~ectlve set up initially in mind); thus
this method was chosen.

.
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b. The Stabillty Dcmmin

NACA TM =48

For visualization of the numerical results to he discussed later,
a form of representation was selected which is also customary in the
treatment of the lateral stability of uncontrolled airplanes. There
In a lP,np-@ane the domains are plotted where, tith the renuxhing
airplane values otherwise retained, lateral stabillty or instability
prevails. These domains are bounded by curves, the course of which
shifts if one of these airplane values Is altered and appears than as
a parameter of these curves.

The value 1P (rolling moment due to sideslip) which is plotted
on one axis and has for the uncontrolled airplane the significance of
an indirect restoring force about the lcmgitum axis, is like n~

# (the yawfng moment due to sideslip, or weathercock stability) in
general controllable within wide limits, and is particularly important
for the lateral stability. For the controlled glide bonibof this
investigation 1P is replacedby ~ (aileron momant) which is a
directly effective restoring moment about the longitudinal axis and
thus becomes comparable to np. Thus the 1 ,n wlane logica13y

vsuggests itself for representation of the r gions where stability or
instability of the lateral motion preyails.

In order to detemine whether at any point of the
kt

,n -plane
stability prevails and, therefore, the disturbance of th 1 teral
motion shows damping, one must investigate whether all roots h of the
frequency equation have a negative real part, and whether consequently
the frequency equation is a Hurwitz equation. This is the case when
the 5 Hurwitz determinants

D1 =a

D2 =ab—c

*D ~ = (ab-c)c– (ad-e)a

D4 = (ab - c)(cd -be) - (ad - e)2

formed from tie coeffici-ts of the frequency equation of the fifth
degree

h5+aX4+bh3+ck2+dA +e=O

are all positive.

*NACA Reviewer’s note: D3 as presented is as in the German text.
This reviewer believes, however, that in this determinant e = O and
should be used as such.

.

.

●

✎

.

.

.
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Inversely, if all roots X of the frequency equation have a
negative real part, all.values D~ to D5 sxe positive. It is a
consequence of this criterion (end .completelyequivalent to it) that
all coefficients a to e, furthermore ~ and D4, turn out positive.

*
If one now visualizes the point in the ~,.@.sne considered

before (which assumedly has been found to be stable) as moving, the
real parts of the roots, the coefficients a to e, and the 5 Hurwitz
determinants change. If one now comes to a point where, for instance,
the real pert of a real root – and thus this root itself –vanishes,
e too vanishes, since lel is proportional to the magnitudes of all
roots; OR the other hand, if one reaches a point where the real part
of a complex root is zero, D4 becomes zero,
In any case, however,

as can easily be shown.
D5 = eD4 vanishes, and since for reasons of

continuity the totality of all points in the l@Tplane where stability

prevails must be connected, the following inportant statement is valid:

The limit of the stability domain lies at D5 = O.

Thus it is sufficient for graphic represataticm of the stability
domain to plot D5 = O, or, simpler, e = O and D4 = O as Iititing
lines of a region at an erbitrary point of which stability is tiown to

. prevail, as illustrated in figure 4.

. c. Frequencies and Dampings

In addition to the determination of lateral stability, it is often
important to know what frequencies and clampingsoccur when a disturbance
is damped. Thus one investigates the magnitude of the roots x of the
frequency equation for a certain point of the ~,n~-plane.

At least one root is always real and may be numerically determined
without difficulties. ~ order to procure an approximate value for a
root, one considers the problem itself and attempts to make the essen-
tials of the prescribed motion after a disturbance stand out under
simplifying assumptions, and thus to obtain an indication for sn
approximate solution.

According to p. k, the turning of the flight path into its
undisturbed directim takes place as an aperiodic transitory motion
(yawing motion)(fig. 5) on which damped rolling and yawing oscillations
are superimposed.

.
Of course, this applies only under the condition that the restoring

moments about the longitudinal snd vertical axes are so large that
. really oscillations, not aperiodic motions? originate, Then it will be

possible to replace their influence on the yatig motion by the
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influence of a mean position or the glfde boa about which the rolling
and yawing oscollations &re performed. By the isolation of these two
types of oscillations one arrives, therefore, at a consideration of the
yawing motion alone; for oltaining the approximate solution one has only
to express the dynamic relations corresponding to this train of thought.,

A motion about a position of equilibrium vanishes - as can easily
be seen from the differentiti equathn of a free oscillation - if the
moment of mass inertia and”the damping moment vanish, or if the
restoring moment hy fsr predominates over aliLother moments. UMler the
first assumption and further neglect of the coupling moments stemming
from the velocities of rotatim the three equations of motion from
pp. 11 and 12 then tlsdcethe following form:

In *he second and third equation the partial moments, separately
dependent on q and K were again co~ris ed into a single moment
caused by E alone. In this manner it mqy easily be seen that both
equations can be satisfied only when 13 as well as ~ is permanently
zero.

Of course one obtains the same result if one assumes, according to
the other way of thinking, that the restoring moments by far predominate
over all other moments since in that case even a vanishingly small
angle of sideslip P or aileron deflection ~ produces equilibrium
of mcments.

Thus with 13= O there becomes, according to p. 12, q = y and
K = X cos y, and according to PP. 7 and 8, the aileron deflec-
tion ~ =k(~+ q)= k(Xcosy+~)=O or v=-*X.

,

.

This signifies that during the yawing motion the mean bank is
proportional to the error in the course of the flight path and is corre-
spondingly neutralized when approaching the direction of the undisturbed
flight path (as it was described at the beginning, p. 4, and now con-
firmed, somewhat more accurately, by calculation).

.

.



NACATM 1248 23

.
?f this value for v is inserted into the first equation, there

results a solution of the re~ining differential equation of the first
. order:

This root
independent of

describing the yam motion is — as was to be excected —

‘%end ‘n~ s-~ce ~he mqgitude of the frequanc~ of ,
the rolling and y wing oscillatim about Its mean position is. at
first, of %or ‘impor%ce. Only in the proximity-of the ~-
and n~+xis wnere {as was said before) the restoring mxnents are so
small ‘chatthe presuppositions of this consideration me no longer
satisfied, larger deviations from the otherwise rather accurate approxi—
mation for h occurs as figure 7 shows for a later ex~le..

.
Analogously, one may obtain indications for the frequency and.

damping of the remaLnlng rolllng and yawing oscillation. The rolling
oscillation stands out clesrly if one visualizes the disturbances about
the vertical axis as completely damped; of course, the influence of the
coupling moments also must be neglected. with p=x= O there remains
in the equation (2a), p. H, only the first tie

+2%”-&.&i=o

lRromthis oriMnsry oscillatim eq-tion then result the approxi-
mations (required for the later numerical evaluation) for the product IZ
and the sw 2 of the (mostly) conjugat~omplex pair of roots for the
rolling osci~ation:

Therewith the frequency fx and the damping of the rolling oscil-
lation become

Therefn

fx = &/-.P. =. DX =-+@)

the damping is explained as the ratio.of the damping factor
of sm oscillating configuration to its critical da?gpingfactor; thus it
is zero for an undamped oscillation, end 1 for the aperiodic limiting

. case.

.
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The way to em estimate of’the yawing oscillation is perfectly
analogous. If the disturtmnces ~ and x are now put equal to zero,
one o%tains from (3a), p.15

and the product JC and the sum u of the pair of roots for the yawing
oscillation are approximated:

the frequency fz and the damping
ere

Dz of the yawing oscillation tha

()

la
cpsand Dz=-—-

G2

Later results (figs, 9 and 11) show that the values II and n
which sre decisive for the frequency are in good agreement with the
actual values, whereas the values determining the dem?pingX and a
frequently agree with them less the more one approaches the limits
of the sta%ildty domain. .

VI. NOMERICALEXAMFLES

a. Numerical Data

As mentioned at the beginning, the object of this investigation
is to give an insight into the lateral stability of the glide bonib
treated here in order to obtain indicatims for a desi~ as favorable
as possible. The required numerical treatment is outlined for this
special case only; however, even for attempting a quite general solu-
tion of this problem there is no other way than to use average values.
The seeming limitatim of general validity is a necessity due to the
nature of the rotter, beoause its inte~relations are so complicated
and not readily seen. Nevertheless we shall attempt, by means of
consideration of relatively extensive variations for the most essmtial
properties of this glide bti, to include all similar automatio pilots.
However, be it here stressed once mme that a COWariS~ iS possible
only when the same methodof control is taken aa a basis.

The numerical data used stem partly from wind tunnel measurements
and partly from rough calculations. Since the automatically-controlled
bomb no longer has a form remotely simller to an airplane, several
quantities deviate rather far from conventional ones as will be sem
from the following compilatlm. Therein the values which form the basis

.
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for the principal case described on P.19 are underlined; moreover, the
limiting values within which the stability domains were plotted ~e
given.

Compilatim of numerical data

.
Lift: c~ = O.1~, 0.35, 0.55; in reference to an increase in weight
~ated separately later), assuming constant velocity, further
increases in Mft v~ues up ta 0.643may restit.

Lateral force: the slope (partly dependent on the variat$ns in magni~

tude of the front stabilizer and vertical fin) is Cq: =
9i

= 0.3,

0.5, 0.7; the influence of the velocities of rotation ~ and mz and
-the aileron deflection ~ were neglected, as iuentionedbefore on
pp. 9 and 10.

The fo=owi~ moment coefficients o the lateral stability were
$

()
obtained under the assuqtion that & = 15 to 20

x

and
( 7’;

=1.5 to 2.5.
.

Dauming in roll: L =4, 7, 10; since it is a function of the fairly.-
COIIStaIlt Cat, it c&&.be-sr~ltr&ily vsried (at the most, insignifi-.
cantly, by front stabilizer and vertical fin); nevertheless the influence
of a possible inaccurate estimate or measurement wi~ be clarified by
taking the two limiting values into consideration, too.

Yawing-rolling moment: lZ = 1.45,2.45, 3.45;it varies with Ca and
is, nmreover, for the principal case (ca = 0.35}altered according to
the given limiting values.

Rolling moment due to sideslip: lp = O, 2, 4; aside from the less
important influence of,the front stahtlizer, it may be decreased very
considerably (according to oral information by A. Schleferdecker) by
end plates on the wings so that the notewortlzycase of a vanishing
rolling nm.mentdue to sideslip is investigated as weld..

Aileron rolling moment: Ig = s.6; It $s given by the ailerons and has
for the controlled glide bomb not such an independent significance as the

~ = -’3 ;o:kil~vo:%v%t:aileron moment: . 3; this change
for an average value of O.

-“ for the control-gearing ratio .

.

for ~ signifies
m a variation
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act
RolJSng-yawing moment: it varies with Gtt = ~ thus is a function

Of ~(Ca) and haa for Ca = 0.35 the approximate value ~ = -O.14;
since it appears only in the coniblnation(~ - ~~ ), the influence of
the pyroscopic terramay he simultaneously taken into consideration in
this expressicm by suitable selection of the limiting values
for (~ - TF~) =+.2Tg, -0.140, + 0.329.

Damping-in-yaw: nz = 2, 4, 6; the relatively small damping-in-yaw is
~~roved by the front stabilizer and vertical fin and is decreased by
negative et, and.thus for the larger ca-tiues (which has to be noted
when the case arises).

Yawing moment due to sidesl.ip(weathercock stability): n~ = O . . 0.6;
it is determined by the positim of the center of gravity; since the
latter is mostly fixed, for reasons of longitudinal stability, this
moment may be altered appropriately by front stabilizer and vertical fin.

Aileron yawing moment: its ratio to the aileron rolling moment
is n~/1~ = -0.01, 0, +0.01; this sometimes uncertain and fluctuating
value may become iqortsnt for the sign of e (as discussed on p. 18),
particularly for a larger rolling moment due to sideslip, and is there-
fore taken into account in spite of its apparent insignificance.

An increase in the weight of the glide boti for constant radii of
inertia end an increase in fli t altitude enter into the relative
aircraft mass density: ~s P= -&= 700, 1000, 1300; the first value—.. —

corresponds, for an altitude of H = 1.0 kilometer, to a weight of
of G = 600 kg; the two other values correspond, for this weight, to
flight altitudes of 4.5 and 6.9 kilometers (calculated according to the
very accurate rule of thunibby Knoller [1o]):

Aerodpamlc time unit: TF=us$ = 4.48s for the principal case
atv= I-25meters per second; it is, at first, not freely selectable but
is a function of several values already mentic&ed and of ~he longitudinal
motion of the glide bonib,and thus changes for every case individually.
The same applies to the longitudinal i.nclinaticmof the flight

e“ tan 7 = -0.14
4

and to the variation with time of the longitudinal
inclination: j = O)z

Regarding the control one may alter, aside from the control-earing
ratio k discussed for the aileron mxnent ~, the measuring
ratio: m = 0.1, 0.2, 0.3; for the control used here it depends on the
a—~ formed by its measuring axis and the vertical axis of the glide
bonibwhich is in these three cases approximately 60, 11°, and 17°.

.

.

.
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b.

Although the principal

The I?rincipal

case which is

27

Case

characterized by a steady
rectilinear flight path probably never actually occurs, it has its
justified significance for an investigation llke the present one,
becauss it avoids as far as possible any peculiarity in any respect.
Thus one does not take a certain, actually occurring phugoid motion
as bssis for it; one starts, on the contrary, from the conventional
concept that this motion has, inversely, to be reg=ded as deviation
from a steady rectilinear flight path end has, accordingly, only th~
significance of a special.case.

The principal case, selected according to this point of view, may
now be treated numericaUy, using the numerical data of the preview
paragraph. One obtains a good survey always by plotting first the
stable domain for the representation of which, according to p. 21.,
the Mes e =Oand D4= O are drawn into a

%
n~-plane. e = O is

a hyperbola degenerated into a pair of straight 1 es and can easily
be plotted into the ~nP=@ane. In contrast,

D4= (ab-c)(cd -be) -(ad -e)2=0 is of am@OrdO~Oefn
and n~s ?and requires, for the numerical evaluation, some deliberat on
in order to obtain with a minimum of calculation expenditure sufficiently
accurate results. The numerical treatmmt of such problemd mostly is
discussed rather cursorily; however, the attainmm t of final results is
still a long way off, and thus a few useful remerks concerning the
calculation wi~ be inserted here.

First, it is always useful to clsrify the desired accuracy in order
to determine accordingly the nuniberof digits required for calculation.
Here the result ought to show three digits, the last of which may be
uncertain; since, however, in the calculation process the first digit
of many an important nuniberis lost in the forming of differences, four
digits sre necessary to start with. Thus, the rounding up or off tid
extend not only to whole but also to half units of the last digit
cmied which was then denoted by Burrau’s point 11 . This simple
means permits, by the way, for the same nuniberof digits an effortless
doubling of the accuracy of a calculation if the necessity arises. Any
csrrying of further tigits would, after all, be wasted effort if they
finally are not expressed in the graphical representatim and do not
effect the result in any other w~. By making suitable proofs during
the lengthy calculatim process, the always occurring unavoidable
errors may be prevmted from doing more extensive damage.

Figure 6 showsthe thus Cbttied result, the stability domain of
the principal case. The continued necessery deteminatian of the
stability at an arbitr=y pofnt of the represmted ~ ~otin outside

!of the negative (shaded) regi~ of e and D4 iS qui e simple: the

. coefficients a to d there directly turn out positive, just as the
-tz determinant D2 = ab – c which was a3ready formed in
calculating D4.
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Consideration of the principal aase as well as of later cases
shows quite uniformly that the moment coefficients ~ forthe aileron
moment and nP for the yawing nnmmt due to sideslip (weathercock
stability) are more or less equivalent with respect to lateral
sta%ility; in a representation at the same scale for

t
and for n

the approximate mirror image symmetry of the regions wi h respect,toP
the bisector of the angle would become even clearer. A comparison of
the results shows that this mirror image symmetry is more or less
strongly influenced by various couplings and clampingsabout the longi-
tudinal and vertical axis. Hence the equivalence of an immediately
effective restoring mment for these two axes - which had been assumed
previously in selecting the

%
pqlane -proves correct; under similm

circumstances it probably hol true for other methods of control as
well.

The large stable domain of the principal case can be utillzed
praotlcally only with a few restrictions. It will be mefti - if only
because of the uncertainty (discussed on p. LL) in actually maintaining
a certain value of the weathercock stability - to select ofly operating

points sufficiently far distant from the ~-exis, even if theoretically
stability prevails up to their immediate proximity. For the aileron
moment, conditions are not so sensitive; however, one will also select
values at least ample enough that (in spite of the always possible
Inaccuracies of construction) no excessively erroneous positions remain
permanently in existence. An upper limit for ~ and nP will be
given mostly by the frequencies which the glide bonibis not to exceed
with reference to its longitudinal and vertical axis.

A possible range chosen according to these deliberations might for
instance lie at

?
=landn

f
= 0.3; the stability for this case

will now be invest gated more c osely. In order to be able to ~udge
hcw it must be shifted if its %ehavior concerning the initial distu&b-
ance causing the oscillation is to be altered, and in order to gain a
more exact Insight into the Mstributfon of frequencies and clampingsin
the stability do-in, the latter are additionally determined along
two sections at ~=l~dnP =0.3.

First the real root of the frequency equation describing the
yawing motion is determined for the entire ~~-region represented.
As an approximation the value given on p.23 .

h
0.35=.— =—

%
= -0.39,$

0.2 x 4.48

was

“the
used, and the further correction was made aocording to Newton with
aid of Hornerts scheme.
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.

●

Figure 7 shows the result. As was to be expected according to
previous deliberations, major deviations of the root h from the above
approximate value, otherwise accurate within 1 to 2 percent, occur in
the proximity of the :.- and n~-azis. This approximate value signifies.
that according to ~’= 1.8s “an error

half smrplitude.

If one can tie sure, in stability
similar kind, that one stays within the
where this good agreement exists, it is

ti course has bean damped to

investigations of this or a
part of the l@~-plane only
very profitable beforehand to

lower the degree of the frequency equationby one with the aid of this
root. AS a result, one need calculate aaly with mch simpler Eurwitz
determinants and the evaluation of the frequency equation is facilitated.
Unfortunately, this method is not possible for the present investigation,
because the ‘stabilitydo~ ae~ for the sake of a oomplete survey,
plotted to the 1 – andnp+xis.

9

If the root of the yaw5ng motion has bea determined with suffi–
cient accuracy for an arbitrary point of the

Y
~-plane and is inserted

for the last time aS a proof into Hornerts sch me, there result at the
same time the coefficients a’ to &l of the remahing frequency
equation of the fourth degree

L~ + a~k3 +bt~2 + Ctk + dt = O

Its roots describe the oscillations of the glide bob about the ‘
longituUnal and vertical sxis which in the proximity of the –
and n -axis always become aperiodic; this “$qu~tionnow has to

!
‘%e solved.

numer tally. The iteration method of v. ~efftz [4] has the
disadvantage that it converges poorly for roots of equal order of magni-
tude and for that reason is not always usable. In order to attain the

. aim quickly also for this case, an approximation method is given in the
appendix which permits a rapid and clear solution. Figures 8 to 11
were calculated according to this method - chiefly according to the
“pi - method” because it agrees better with the approximate values

(PP. 23 ~d 24) used generally.

Figure 8 shows the section along 1 = 1 through the stability
domain of the principal case. No peculs$ities of any kind occur. The
rolling oscillation rema~ almost uncmed; the yawing oscillaticm
becomes slower ad slower for smaller ne-mlues and its two roots
finally become real so that it is no longer noteworthy in this boundary
region for v~is~ yawm mo~nt due to sidssliP at the limlt of
static stability. The e- of the yam osci~ti~ ~~w~le
increases mme and more rapidly and would exceed the value 1 in the
aperiodic limitlng case.
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The approximate values for II and x
and u only just tolerably, with the exact
figure 9.

NACA TM 1248

agree well, those for x
ones, as can be seen from

The section along n~ = 0.3 through the stability domain of the
principal case shows a somewhat different pioture insofar as one
approaches here, with diminishing aileron moment, the limit of dynsmic
sta%ility, as can also be seen from figure 6. Thus one daMPing vanishes
there, in this case that of the rolling oscillation. No further points
were calculated below the value

2
= 0.3, where t~s occurs, since they

have no practical significance. T e fact that the damping, which finally
disappeas at the stability limit, starts decreasing more or less
strongly before that, offers another clue for the selection of the
operating point where the clampings- not too good as it 5.s- are to be
utilized as efficiently as possible.

The agreement of the approximations with the exact values of II,
2, X, and u can be seen from figure 11, which again shows the good
serviceability of the apmximate values of II and n determining
the frequencies, and the
and cs decisive for the

What was said above
and the variatim of the
required chsnges, to any
from the principal

c.

Starting from

case,

not so good serviceability of those of Z
dam.ings.

concerning the root h of the yawing motion
frequencies and clampingsapplies, with the
other of the cases discussed below that result
and need not be repeated.

Influences of the Glide BonibValues

the principal case one now varies in turn one
quantity, as described on p. 19, and investigates its influence on
the stability domain. All values used in this problem were thus
included in arbitrmy sequence, no matter whether their variation can
be achieved easily or not at all; reasons for this will be given later.

First, the influence on the stability domain is investigated for
steady rectilinear flight performed with different Oa and accordingly
v=ied velocity, the other ratios remining unchanged. As always in
uncontrolled lateral motion here also a distinct ca dependence becomes
appa.wnt: for smaller ca-values the stability domain increases.

For the important detemiution of the variation of the stabillty
domatn during a’phugoid oscillation one made the assun@ion that the
release velocity of the glide bo@ is only 60 percent of its equili-
brium velocity; thus it was based on a very pronounced path oscillation
which shows at the four locations denoted in figure 13 the following
roughly calculated value:

.
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TABLE l.- VALU3S DURIIfGTEE PHUGOID

Location

1 wave crest

2 descending flight

3 wave trough

4 ascending flight

steady reotilineer flight

~Q
s

75

X25

156

X23.

125

-0.146 d. 0628

–.589 0

—.146 .0386

.126 0

-0.146 0

(+K- %?)

0.329

–.140

-.279

-.140

4.140

Flight’in the wave trough is found to be most unfavorable for later
lateral stability. The considerable difference between the stability
domains of the wave crest and the wave trough stems solely from the
additional ~oscopic mment due to the rotatim of the path of the
longitudinal motion and shows clearly that the tak~ into consideration
of the gyroscopic term which was motivated on p. 6 is justified. Since
it appesrs only together with the rollin&yawing moment n= in the
combination (~ – TF~), - as both vary with ~ – the two stability
domains for the wave crest snd the wave trough may be interpreted also
as if in the stea& rectiltie= flight of the principal case ths ~
were one the equal to +0.329 and the other time equal to A.2T9. Thus
the influence of the roUin&yawing mxaent on the stability domain is
simultaneously clsrified and need not be investigated separately.

Compared to the locations 1 and 3 where the path rotation of the
longitudinal motian is most pronounced, the approximately linear parts
of the phugoid motion at the loc&tions 2 and 4 exert hardly any influ-
ence on the stability domain. The longitudinal inclination of the
flight path y as such, is, therefore, insignificant provided the
ca-~&lue remains the sm.

An actually performed flight of a glide bonibwith the approximate
values of the wlncipal case is represented in figure 14. The aileron
moment is about ~=1, theweathercock stability n~=O.5; it is

true, the reduction ti velocity at the release is not as high as had
been presupposed in figure 13 so that the phugoid nmtion appears less

. marked. The lateral curvatures of
to 60 seconds flight duration stem
be interpreted as Msturbances for

. p. 3*

the path at about 30 to 40 and 50
fromarbitr~ comnands which are to
the lateral motion in the sense of

●
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Another value~besides the control-fgeexing
able by the control is the measuring ratio m;

NACATM L248

ratio k which is vari-
for the type of control

used here it depends on the tilt of its measurhg axis in the glide
bold). Figure 15 shows that in the case m = 0.1 (too slight tilt) a
large part of the useful stability range is lost because one is already
too close to the limiting dase m = O where a lxankis no longer
measured and the control method is therefore useless. Also, for m = 0.3
,(exoessive tilt) conditions are somewhat more unfavorable than
for m = 0.2. Thus an optimum regarding the magnitude of the stability
range lies between m = 0.1 end m = 0.3, probably in the proximity of
ths value used for the prlnolpal case m = 0.2. Since the time to damp
half the amplitude of the yawing motlo.nvaries with m, as can be seen
from pp. 28 and 29~ it is from this point of view expedient to use a
small m, thus a small tilt.

The influace of the rolling moment due to sideslip may be best
understood on the basis of the conventional representation of the
stability range for the uncontrolled lateral motion in the l~n~-@.ane
as it can be found for instance in Mathias [X22. For this purpose the
representation of the stability range for tho principal case without
control, thus for % = O, was incorporated in figure 16. If one
considers In it, for instance, the point 0.3 on the n

F
is, one is in

the statically unstable range and, as is well bown, t takes a definite
minimum rolling moment due to sideslip 1P to attain stability. If
one proceeds in the directlm of Increasing 1~-values, one reaches - it
is true, for rolling moments due to sideslip so lmge that one would
no longer co~ider them, for instance, for airplanes of ordinary
design – again an unstable region, which this time, however, is the
region of dynamic instability. If one stops at 1 = 4, one has reached

tapproximately the rolling moment due to sideslip o the automatic pilot
considered here, which 1s, therefore, much too large. In order to
attain stability, the contiol must intervene with a minimum aileron
moment ~, which would be read off for nP = 0.3 from figure ~6a.
For 1P = 2 and the”same n

A
the gllde bomb with the values taken here

as a basis would be stable o without-control, and only below nP = 0.15
a control would become necessary. The 6s,s0is slightly dlfferant
for 1P = O. Here the uncontrolled glide boti is not stable for any
positive np; however, a very small ~ a, the part of the control
system Is sufficient to eliminate this static instability; hence in
figure 16a the different oharacter of the unstable range for 1P = O
and the two other lpal.ues. It is shown with particular eqphasis how
many advantages a small ro3Mng mmnent due to sideslip offers, which
probably applies likewise to glide bombs of similar type.

The weight of the glide bonibmay be increased for unchanged lift
coefficient ca and.correspondingly increased flight velooity or
inversely. The first case is represmted under the assuqtion that the
radii of inertia remain unchanged; it shows that by using this method
surprisingly little of ths stability range is lost.
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AS tiscussedon p. 26, the sam over-all pioture would hold if for
unchanged weight the f~ght altitudes were instead of the original
1;0 kilometer (principal case) now 4.5 and 6.9 kilometers. This fact
signifies only that the stability range remains fairly constant whm
large differences in’altitude are passed through in flight.

Figure 18 represents the flight of a glide bonibof about 1000 kil-
grams weight to which corresponds, for an altltude of 2.0 kilometers,
a relative aircraft mass density us = 1300. The initial lateral curva–
ture of the path was not intentimal but was probably due to release
disturbances. For a prescribed size of the glide bcmib,the high flight
velocities of more than 200 meters per second occurring here can be
avoided only by an increase of the lift coefficient ~a, as had been
presupposed for figure 19.

Here an increase in weight, for unchanged radii of inertia, is
obtained at the price of a much more extended dargemmt of the
unstable region, as had been the case for unchanged lift coefficient ca.
Congmriscn with figure I-2where only the vmiatim of Ca was investi–
gated, while the weight remained unchanged, shows a striking similarity
in the unfavorable influence of high ca-’valueson the stability region.
Thus the assumption suggests itself that of the possible cotiinations
of lift coefficiart, flying weight, and velocity the first exerts the
decisive influace on the size of the stability domain. In order to
recognize a possibly existing connection, the table 2 was set up:

TABLE 2.- RATIO ~ TEE S= OF THE UNSTABITl~ION AND

DIl?FEFERENTSTATES OF FLIGHT FOR RECTILINEAR PATH

Figure Size of the Ca
unstable region

us

0.014 0.15 700
12 .117 .35 700

.270
● 55 700

13 location 2 0.122 0.35 700
location 4 .MO

● 35 700

17 0.142 0.35 1000
.162

● 35 1300 ~

.
19 0.259 0.497 1000

● 397 .643 1300

.

Fr TF S

2340 2.93
1000 4.48
610 5.66

-H
1000 ;.;:
1000 .

1430 5=35
1850 6.11

1000 6.40
1000 8.32
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The rectilinear but not steady perk of the ascending and descending “
flights during the phugoid motion also were included with-the oases sui~
able for this comparison. As measure of compmison for the unstable
region we selected the size of its area in the represented ~ regian,

.

expressed in (L.#p)-units. rThe weight was expressed by the re ative
aircrafi mass d sity US and the flight velocity by the ltroude
nuder ‘I& = v2%g. Finally, the aerodynamic time unit & = us #
was included since it belongs in this example.

As even a most superficial consideration reveals, the magnitude of
the unstable region is an approximately unequivocal functicm only of the
lift coefficient ca; this dep~dence is represented in figure 20.

Without generalizing too hastily it is, therefore, shown with
satisfactory regularity that wtth respect to the magnitude of the
unstable region, small oa—values are favorable, large ones unfavorable.
Accor&agly, it will be best, if a minimum unstable region is desired,
to fly with a small ca-vdue, mostly given by the mimum admissible
flight velocity. If the longitudinal motion of the glide boti is
controlled arbitrarily or automatically, the unfavorable influence of
l~ge angles of attack maintained for a longer time must be taken into
consideration in a given case.

At this point it should be mentioned explicitly that in case of
a change of ca the two related coupling moments lZ and n= were
also chenged throughout, because the same holds true awhaally. The
I?fluence of the rolling mommt due to yawing lZ as such is insignif-
icant, as figure 2.5will show, and the rolling moment due to yaw ~
also is only of secondzmy importance compxred to aa. It must be borne
in mind that in figure 13 an nx that should appertain to Ca = 0.70
corresponds to the slightly enlarged unstable regicm of the wave trough.
Hence it results that it is really the lift coefficient ca, and not ane
of ths COUpling moments ~z and

3
dependent on it, which exerts the

decisive influence on the size of e unstable region.

Figure 21a shows the ewected favorable influenoe of a large
dsmpin~in-rolJ.. For & = 4, where the moment coefficients of the
daq@@n-roll and damping-in-yaw ere equal, the tirror imge symmetry
with respect to the bisector of the angle mentioned on P.28 is strikingly
good; this stands out clearly in figure 21b where ~ and n~ are
plotted to the same scale., If the damp-in-roll is improved, the
unstable region is reduced in such a manner that it decreases more in
~ than in n@irection (again under the assumption of equal scale!)

The vaiation of the dam@n&in--yaw now also has the expected
influence, as will be,shown by the following case.

.

,
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.

Here, too, the self-violent favorable effect of large dampin-in-
yaw is obvious; the unstable region is influenced mahil.yin its

. extension parallel to the n~-s.

One is not always able to make the dampin~in-yaw - and even less
the demping-in-rolll - so lerge as to obtain a decisive effect on
lateral stability. The investigation of these and also of other cases
where en influencing of the aerodynamic properties of the glide bonib1s,
in practice, hardly possible has no other p~ose than to detezmine
which one of the two limiting cases of numerical data lamwn mly
inaccurately must be substituted into the calculation to stay on the
sefe side.

The lateral force which, ammg other effects, also has a dsngdmg
effect, exerts a surprisingly small influence, the reason being that it
is by one order of magnitude smaller than the moment coefficients of
the damping-in-roll and dampin@n-yaw.

For negative ~/~, that is~ wh~ the restor~ force about the
vertical axis resulting from the weathercock stability is reduced
becauseof the ailerm deflections simultaneously producedby the
control, the coefficient e may become negative in spite of positive
(but too small) weathercock stability. This case discussed on

● pp. 17 and 18 is practically the otiy one where static lateral insta-
bility also is possible.

.
For positive ~/u, on the otier md, the re@~ of @tic

instability is enlsrged so that – the ailerm yawing moment being not
definitely known - it is best to take both influences into ccxnsideratim.

The rolling moment due to yawing has practically no influence at
all on the megnitude of the stability domain, as is to be expected
(if for no other reason) because of the very full wing shape of the
glide bonb. It is related to Uz, exactly like the gyroscopic moment
that would arise for a path rotation of the longituUnal motion and,
accordlmgly, would be just es insignificant. Thus it is shown also
from this point of view that the neglect of the gyroscopic temn in the
equatim of moments for the longitudinal axis

d. C~CIUSi~

In surveying the figures which represent

was ’fully justified.

the stability,domains
as functions of the vaYious glide boti values, one finds that
directional stability is with certainty attainable for every case, %y
appropriate adjustment of the control in cooperation with the
ailerons (m,%) end a correspon~ ya~ ~=t due to siaeslip (n~).
No other definite aeromc properties of the system need be assumed
to make the control method treated here serviceable although some are
more or less unfavorable. Of course, one will, where it is easily
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possille, select the more
be used as a directive.
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advantageous design; the following table may

TJ16LE3.- INFIIIWa ONTHELATERAL STABILITY

Parameter Figure Favorable ~favorable

Lift coefficient Ca 12 small Large

Phugoid 13 Wave crest Wave trough

Rolling-yawing moment ~ 13 Large (> O) small (< o)

Measuring ratio m
(a function of gyroscop-
tilt angle) 15 About 0.2 Other values

Rolling moment due to
sideslip lp 16 small Large

Weight increase (1.Ls) 17, 19 small c~ Large Ca

Altitude H 17 small Large

Damping-in-roll ~ 21 Large small

Danping-in-yaw nz 22 Large small

Lateral-force increase Cq 23 Large small

Aileron yawing moment n~ 24 About o Other values

Rolling mment due to yawing lZ 25 fiactically without
influence

The table is compiled without consideration of the question whethcm
or not an alteration is actually feasible for the individual case; at
the same time, the table shouldbe used to select, in case of unreliably
known values, always the most unfavorable values for safety reasons.
Most significant with regard to the minimm possible unstable region
for lateral motion of the investigated controlled glide bomb are small
rolling moment due to sideslip lp and small lift coefficient Ca.

AS a conclusion it should be mentioned again, in reg=d to what
was said on p. 5 , that “theob~ect of this investigation was not to
present, for a certain individual case, a calculation as accurate and
complete as possible, bxt rather to give a survey so comprehensive that
its results make a more general insight into the problems of this .

.

automatically controlled glide boti possible.
.
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VII. SUMMARY

The investigation of the lateral stability of an automatically
controlled glide hod led also to the attempt of clarifying the influence
of a phugoid oscillation — or of any general longitudinal oscillation –
cm the lateral stability of a glide bonib. Under the assumption that
its period of oscillation considerably exceeds the rolling and yawing
oscillation and that Ca is, at least in sections, practically constant,
the result of this test is quite simple. It becomes clesr that the
influence of the phugoid oscillaticm ~ be replacedby suitable vari–
aticn of the ro~yawing moment on a rectilinear flight path instead
of the phugoid oscillatim. If the flying weight of the glide boti of
unchenged dimensions is increased, an increase of the flight velocity
will be more favorable than an increase of the lift coefficient. The
arrangement of the control permits lateral stability to be achieved in
every case; a minimum rolling moment due to sideslip proves of great
help.
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VIII. APPEND~

AN APERCKCMATION ME’IEODF~ SOLUl?IONOF AI&WRAIC
.

EQUATICXW OF TEE FOURTH DEGREE

One imagines the four roots of a prescribed algebralc equation
or the fourth degree

grouped into two pairs; let the root products and sums for each of these
pairs be denoted by II, ~ and X, a, respectively. If two conjugat-
conplex roots exist, their conibinathn is self+vident and real roots
exe treated as pairs, grouped axbitr~ily by twos.

The fo~owing ratios are known to exist between the coefficients at
to at and the root products and sums:

Ct =-IIu–Yc~

dl = III’(

They readily permit the following method.of solution for the four new
reel unknowns II, ~j X, and u to be read off:

For instance, let an approximate value of II (or JT)be known;
then there results first, from the fourth equation, x (and IT, respecti
ively) and then, as csnbe seen easily, from the combined first end
third equatian, the u and 2. If the TI (or n) used initially
had been correct, the result (in case of substitution of all
these successively found values into the right side of the second
equation) would be exactly lt; but since an approximation had been
used, the proof II + XU + al- b~ # O will be omitted. Thus the
result of the proof Is in a very simple manner dependent on II (or YT);
this value csm nowbe easily detemined according to the regula falsi
(bracketing)with arbitrary accuracy In such a way that the proof gives
zero; then one has found the correct value of II (or m). Thus the
course of calculation appears as follows, starting from an approximate
value for II:

df

II; X
ct - atfi

=—;(r=- ;2 =-(a*+u); II+ Xu+fi-b
II II -m

.
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Every further line is used.to obtain a more and.more exact value
of IT until the desired accuracy is reached. If one finally inserts
the correct value for ~, one obt~, accordfng to t~s methods not
only the remaining values m, a, and X, but has in addition for all of
them a common proof. If one starts with m instead of II, the calcL-
latian takes, after determination of II = d~/fi,exactly ths same course.
For 11 and m being approximately equal, a more accurate detemnination
of the second value of each line is sufficient to have, in forming the
difference II– X, enough digits left to calculate u.

It is true that this method will fail in case of II = m; however,
the approximation method may be used here also, provided one starts, in
a slightly vsried manner, with X (or a) instead of II (or x). With
the aid of the four ratios used initially the following second type of
solution is @t as clear:

After selecticm of 2 (or a), the u (or~, respectively) inmedi–
ately results from the first equation, and then, from the second and
third together, the x snd II; the proof IIst— dt # O now serves
exactly as in the method described before for improvement of the initial
value X (or a). The separate lines of the calculation then read, if
one stats, for instance, with X:

.

This “Sigma+nethod” also has a weak point, in the case of X = a.
However, in that case it is very well supplemented by the “Pi-thod”,
except for the (practically highly improbable) possibility of simul—
tane&s equivalence II = m and X = a. Anyway, this
shown by definite ratios between the coefficients at
solution is then always possible in some other manner.

With the values II, X, X, and a the problem is
solved, since the four desired roots now can be easily
the two quadratic equations

fact would be
to df, and the

practically
determined from

~2 -zL+IT= Oand L2-ah+fi=0

Thus only the chsracter of the roots -whether real or co~lex - emerges;
this knowledge is, therefore, not even required for performing this
approximation method.

Translated by Mary L. Mahler
National.Advisory Committee
for Aerouutics
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Figure 6.- The stability domain of the principal case, that is, for average
values in steady rectilinear flight.

Figure 7.- The root A of the yawing motion.
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Figure 19.- Influence oftheweight(v constant)on thestabilitydomain,
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Fi@e 22.- Influence of the damping-in-yaw nz on the~labifitydomain.
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Figure 23. - Influence of the increase of the lateral

the stability domain.
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Figure 24. - Influenceoftheaileronyawing moment n~ on thestabilitydomain.
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Figure 25. - lntluenceoftherollingmoment due toyawing on thestakilitydomain.
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